热值是初中物理热学中的一个重要的物质特性。它是指某种物质完全燃烧所放出的热量与它的质量之比,反映了这种燃料燃烧时的放热本领。
利用热值可以解释一些生活现象,比如为什么火箭利用氢燃料?这是因为氢的热值比较大。在质量一定时,氢完全燃烧所放出的热量比其它燃料放的多,从而在做功冲程中,转化的机械能就更多。
答:剪刀用了杠杆平衡原理和压强原理。剪刀相当于有两根杠杆,手握剪刀的两个手柄对它们加了相反的动力。两根杠杆在支点处交叉,剪刀刀口被剪物体产生相对的压力。由于刀口很薄,受力面积极小,根据压强公式P=F/S可知,这时剪刀刀口就对被剪物产生很大的压强,而将物体剪断。
弹簧是一种利用弹性来工作的机械零件。
用弹性材料制成的零件在外力作用下发生形变,除去外力后又恢复原状。亦作“ 弹簧 ”。一般用弹簧钢制成。弹簧的种类复杂多样,按形状分,主要有螺旋弹簧、涡卷弹簧、板弹簧、异型弹簧等。桔槔的结构,相当于一个普通的杠杆。在其横长杆的中间由竖木支撑或悬吊起来,横杆的一端用一根直杆与汲器相连,另一端绑上或悬上一块重石头。
当不汲水时,石头位置较低(位能亦小);当要汲水时,人则用力将直杆与汲器往下压,与此同时.另一端石头的位置则上升(位能增加)。
当汲器汲满后,就让另一端石头下降,石头原来所储存的位能因而转化:通过杠杆作用,就可能将汲器提升。
这样,汲水过程的主要用力方向是向下。由于向下用力可以借助人的体重,因而绐人以轻松的感觉,也就大大减少了人们提水的疲劳程度。这种提水工具,是中国古代社会的一种主要灌溉机械。
标准握竿法是四指握住竿柄,食指伸出,按压在竿壁上,以稳定钓竿的方向。
这种握法,手腕可以舒畅地自然摆动,扬竿的姿势优美,富有柔软性。
手部的操作反应快,会比较灵活,如果以单手实在无法负荷(手会废)时,可以以另一手略为辅助抵挡一下。
按铃接收来自室外机的无线语音或视频信号,主处理器对接收的信号进行冗错和解码等处理,然后将解码的视频信号通过显示屏显示出来,而解码的语音信号经D/A转换为模拟信号,通过扬声器播放出来;
将室内机的各种外设比如通话、开锁等按钮产生的控制信号,通过无线信号发射器发射出去。
鸟巢用的是建筑仿生学原理。
鸟巢有如下几大特点:鸟巢结构巧妙。缝叶莺生活在我国最南部的山 林中,它选取芭蕉、葡萄藤的大型叶片,将叶片卷拢。雌鸟用嘴在叶缘相距1~2 厘米处,钻上一个个小孔,然后用树枝纤维、蜘蛛丝和细茎等,从一个 小孔穿出,又从另一个小孔穿入,并随时在孔外打结以防松扣。缝叶莺这样 嘴、脚并用缝成了窝,又用绒毛、棕毛等柔软的东西垫底,舒适的鸟巢就这 样建成了。
“衔泥两椽间”的燕子,在田间地头湿地处啄出湿泥丸,双双衔回椽间, 逐一堆积,又配置干草、草根、羽毛等,经一周左右而成“泥碗”巢。有一 种燕子叫金腰燕,它能筑成长颈瓶那样的泥巢。还有一种燕子叫楼燕,它口腔里能分泌出很粘稠的唾液,与泥丸、草棍掺合,筑成表面透明的巢。楼燕 的近亲金丝燕,它纯粹用自己的唾液筑巢,那就是高档宴席上的“燕窝”。
鸟巢用材巧妙 鸟巢用材之巧妙也不胜枚举:燕子用泥做巢;麻雀以干 草做巢;鹰用粗大的树枝做巢;黄莺用树皮、麻以及草做巢;寿带鸟以树皮和草外面缠蜘蛛丝做巢。 红尾伯劳为了得到细如毛发的树皮纤维筑巢,要花很长时间侦察森林中理想的树,然后一条条撕下成一束运回。尤其是楮树,由于树皮质地细致而 纤维长,嫩枝又多而易于剥皮,是红尾伯劳筑巢的理想材料。
鸟类筑巢,一般就地取材,有时还采用人类使用的材料。在郑光美所著《鸟之巢》中,记载着 1957 年作者在吉林省桦皮厂火车站附近大树上发现的4 个喜鹊巢,其外壁几乎全是用粗铁丝编成的。
鸟巢选址巧妙 猫头鹰和野鸽在岩石缝内筑巢;翠鸟以吃小鱼为生,在 岸边土崖啄穴为巢;啄木鸟以树洞为巢;老鹰、白鹳以大树顶为巢;苇莺在 苇茎之间用长的草叶在高出水面 1~1.5 米处做巢;骨顶鸡在芦苇与蒲草丛中 筑巢,将草茎弯折搭编而成饼状巢,巢随水浮沉。
鸟巢一般筑在地面或草丛中,往往极为隐蔽。柳莺的巢选择地表有枯枝 落叶的地方,或选在山间小溪旁,以苔藓、树皮伪装。据国外资料,鹪鹩的 雄鸟建造很多的巢,而与雌鸟成婚后一个也没有用上,用的是雌鸟的巢,这 也可能是为了安全的疑兵之计吧!
杠杆原理 减少机械效率 走路更轻松
彭罗斯阶梯,实际上其中的原理就是从基点再回到基点的过程,说到简单易懂一点就是上下的过程,一开始你会感觉在向上行走,是因为每节楼梯的高度差都高于底座坡度,这才引起了视觉上的错觉,认为高度一直在增长。
当你走到中间的时候再上楼,实际上是每个阶梯的高度差都低于底座坡度。其实你在行走的过程中高度是在逐
渐下降的,永远都找不到最高的点,就造成了所谓的原地打转。
彭罗斯阶梯是著名的数学悖论之一,它还被历史称为“不可能阶梯”还有些画家为了参透其中的奥秘,便把这 一理论运用到画中。
彭罗斯楼梯,是老彭先生和小彭先生根据艺术家的创作提炼出来的"不可能图形"。在真正进入四维时空之前,三维世界的人,永远无法准确描述四维世界,就如同二维世界的人,无法想象和理解三维世界。
彭罗斯阶梯不可能在三维空间内存在,但只要放入更高阶的空间彭罗斯阶梯就可以很容易的实现。
探照灯是指一种产生定向光源的装置。它将光源产生的光线反射到某个方向。 结构和功能 探照灯由光源和反射器构成,在其前段一般还包含一个或多个光学透镜。光线先通过反射器(曲面镜或球面镜)聚集成束,再利用光学透镜位置和组合的不同来进行控制,最后投射出去。 探照灯主要应用在车辆、电影拍摄、影剧院以及建筑物或展览的灯光照明方面。 探照灯searchlight 借助反射 镜或 透镜使出射光束 集中在很小 的立体角内,从而获得较大光强的灯具。国际照明委员会规定,探照灯是出射光束的半峰片角(在通过最大光强的一个平面上 ,最大光强与50%最大光强之间的夹角 )小于2°的投光灯 。约在1870年,世界上就出现了以碳弧灯为光源的探照灯。第二次世界大战中,探照灯主要用在夜间为高射炮搜寻攻击目标 。现代探照灯主要用于船舶航行(如船用探照灯)和信号标志。探照灯一般以卤钨灯为光源,也有以超高压汞灯、金属卤化物灯和超高压的氙灯为光源的。 种类 普通型探照灯 – 一个简单的盒子中装有光源(经常是卤素棒)以及反射器(经常是球面镜)。 镜面型探照灯 – 置于曲面镜前的光源与透镜之间的距离可调节。 透镜型探照灯 – 光源置于球面镜前,光源前放置透镜(内平外凸),所以又称凸透镜型探照灯(英文缩写为 PC)。 大型版本的此类探照灯由于凸透镜的厚度过大,会导致玻璃破碎。因此人们利用直径阶段性缩小的透镜来解决这个问题。此类探照灯则称为 Stufenlinsenscheinwerfer或者按照发明者Augustin Jean Fresnel)的名字称为 Fresnellinsenscheinwerfer。透镜型探照灯可以通过调节光源和透镜之间的距离来调节光线的射出角度。
CT的物理学原理是吸收定律(郎伯比尔定律)即: 当单色射线经过某一物体时,其能量由于与原子相互作用而受到衰减,衰减的程度与物体的厚度和衰减系数有关。
豪斯菲尔德用上述理论设计的CT机的基本形式是:用一束经过准直的X线,围绕人体的长轴进行扫描,扫描过程中,处于人体相对侧的X线检测器对穿出人体的X线进行检测,将所得到的信号波形形成一系列的投影图,用计算机对这些投影数据按特定的数学模型作图像重建,最后取得这一部位的片状横向断层图像。
本网站文章仅供交流学习,不作为商用,版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除